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A new set of conservative 4th-order central finite differencing schemes for all the viscous
terms of compressible Navier–Stokes equations are proposed and proved in this paper.
These schemes are used with a 5th-order WENO scheme for inviscid flux and the stencil
width of the central differencing scheme is designed to be within that of the WENO
scheme. The central differencing schemes achieve the maximum order of accuracy in the
stencil. This feature is important to keep the compactness of the overall discretization
schemes and facilitate the boundary condition treatment. The algorithm is used to simulate
the vortex-induced oscillations of an elastically mounted circular cylinder. The numerical
results agree favorably with the experiment.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

High order (higher than 2nd-order) finite differencing algorithms have attracted more and more interest recently due to
the increased demand to accurately predict engineering problems and understand fundamental flow physics [1,2]. For exam-
ple, the direct numerical simulation (DNS) of turbulence and aeroacoustics requires high order discretization schemes with
low diffusion to resolve different scale turbulence eddies and acoustic propagation. Fluid–structure interaction simulation
also requires low numerical dissipation in order to accurately predict flow damping and structure response.

High order accuracy requires high order evaluation of both the inviscid and viscous fluxes. However, most of research
focus on the inviscid fluxes to resolve discontinuities. For example, the essentially non-oscillatory (ENO) schemes [3,4]
and weighted essentially non-oscillatory (WENO) schemes [5–9] are all aimed at resolving the inviscid fluxes with high order
accuracy in smooth regions and achieving the capability to capture shock wave and contact discontinuities.

To capture discontinuities, the hyperbolic equations need to be solved in a conservative manner. A conservative numer-
ical discretization is also essential to satisfy the conservation laws of fluid physics. A finite volume method based on the inte-
gral form of Navier–Stokes equations has the advantage to naturally obtain flux conservation. For finite differencing method,
a partial derivative needs to be discretized using the interface location between two solution points in order to be
conservative.

For example, the following is a conservative finite differencing scheme.
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¼ fiþ1=2 � fi�1=2
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If the function fiþ1=2 is reconstructed with higher than 2nd-order accuracy, Eq. (1) will give at least a 2nd-order accuracy con-
servative scheme.

For 2nd-order accuracy schemes, there is not much difference for the computational amount between a finite volume or
finite differencing scheme. However, for high order WENO schemes, it is very different. As pointed out by Titarev et al. and
Zhou et al. [10,11], when the piece-wise parabolic reconstruction is used in two space dimensions, a finite volume WENO
scheme requires approximately three times more CPU time than the corresponding finite difference WENO scheme. In three
space dimensions, the difference is about nine times. Hence, for structured meshes, finite difference WENO schemes are pre-
ferred. For the inviscid fluxes, finite difference WENO schemes only need to handle first order derivatives. The WENO recon-
struction is designed to ensure a conservative discretization of the first order derivatives [5–9].

To discretize the viscous terms using finite differencing schemes, it is important that the stencil width of the viscous term
discretization does not exceed the WENO stencil width. Otherwise, the overall stencil width will be wider than the WENO
stencil and the advantage of the WENO scheme achieving a certain high order scheme within a compact stencil is lost. In
addition, the narrower the stencil, the easier to treat boundary conditions.

The design of the central differencing schemes for the viscous terms in this paper hence is required to satisfy the follow-
ing three constraints: (1) achieve minimum 4th order accuracy; (2) be conservative; and (3) the stencil width must be less
than that of the 5th-order WENO scheme. To satisfy these constraints, it is realized that the finite differencing has to achieve
the maximum order of accuracy within the WENO stencil.

However, for the viscous fluxes that contain 2nd-order derivatives, such as
@
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; ð2Þ
where l is the viscosity coefficient, achieving a finite differencing scheme with both high order accuracy and flux conserva-
tion is not trivial. Usually, a 2nd-order derivative is discretized first by a high order differencing of the first order derivative,
and then the same differencing scheme is applied again to obtain high order discretization of the 2nd-order derivative. These
methods include the standard high order finite differencing schemes directly discretized on the node points as well as the
compact central differencing schemes [12].

If the viscosity coefficient is constant, the conservative high order schemes are straightforward, for example, a 4th-order
discretization can be constructed by using five points. However, if the viscosity coefficient is variable as in compressible
flows, the conservative high order finite differencing schemes for those viscous terms are not obvious. A conservative finite
differencing scheme for the cross derivatives are even more complicated.

If a standard central difference scheme is used, the discretization for a 2nd-order derivative will involve a large number of
grid points with a wide stencil. For example, for 4th-order accuracy, the following discretization will have
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where bk are the coefficients to make Eqs. (3) and (4) achieve 4th-order accuracy. The stencil width of the viscous term dis-
cretization in Eq. (3) is hence ðfiþ4; fiþ3; . . . ; fi�4Þ and is greater than that of the 5th-order WENO scheme ðfiþ3; fiþ2; . . . ; fi�3Þ.

De Rango and Zingg [13] and Zingg et al. [14] suggested a 4th-order accuracy conservative scheme for the viscous terms.
However, their schemes do not achieve the maximum order accuracy within the stencil width used. In addition, they do not
have conservative finite differencing schemes to treat the 2nd-order cross derivatives.

The purpose of this paper is to develop a set of reconstruction formula to achieve conservative 4th-order accuracy central
differencing schemes for all the 2nd-order derivative viscous terms of compressible Navier–Stokes equations in generalized
coordinates. Such conservative schemes are essential to be used with the conservative 5th-order WENO schemes to enhance
the overall accuracy of the flow solutions. The 4th order schemes studied in this paper were first presented in [15]. This paper
gives the proof.

The other special numerical technique used in this paper is that the solution points are not located at the grid nodes as a
standard finite differencing method. Instead, they are shifted by half a grid interval from the grid nodes in every direction in
the generalized computation domain. In this way, they are exactly located at the centroid of a grid cell in the generalized
coordinates. In physical domain, they may not be in the centroid of a cell. There are two very useful advantages of this treat-
ment: (1) it is straightforward to impose accurate boundary conditions such as no slip conditions; and (2) the grid cell inter-
faces are the location to evaluate the conservative flux or derivative reconstruction. It hence allows a direct use of the
computer code structure of a low order finite volume code with the solution points located in the centroids of grid cells.

1.1. Application to vortex-induced vibration flows

The practical significance of vortex-induced vibrations of basic fluid dynamics and engineering applications has led to a
large number of experimental and numerical investigations. Sarpkaya [16] and Williamson and Govardhan [17,18] gave
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comprehensive overviews on the vortex-induced vibration flows (VIV). Al Jamal and Dalton [19] reviewed recent numerical
studies on VIV of a circular cylinder and investigated the irregular behavior of the phase angle. An overview is also given for
the numerical methods used in solving the fully coupled fluid–structure interaction problem by Gabbai and Benaroya [20].

Various CFD methods are employed to study vortex-induced vibration flows, including the Reynolds Averaged Navier–
Stokes (RANS) methods, Large Eddy Simulations (LES), Direct Numerical Simulations (DNS), and their various combinations.
DNS are usually restricted to low Reynolds number flows. LES has been used to solve the problem at moderate Reynolds
numbers. Meynen et al. [21] used a 2nd-order finite volume method with a central differencing scheme and the Crank–Nich-
olson scheme. Mittal and Kumar [22–24] used the space-time finite element approach. Blackburn et al. [25,26] utilized a
spectral element-Fourier spatial discretion method to solve the incompressible NS equations. DNS based on spectral element
methods are employed in Refs. [27–29]. The Beam-Warming central difference scheme is employed to solve the compress-
ible NS equations in [30]. A spectral-element method [31] and second-order Monotone Advection and Reconstruction
Scheme [32] were employed to solve incompressible Navier–Stokes equations. The second-order consistent physical inter-
polation approach is used to solve the 2D unsteady Navier–Stokes equations by Guilmineau and Queutey [33,34] and the
third-order upwind difference scheme QUICK is applied to solve the SST k � � turbulence model by Pan et al. [35]. The
LES is also carried out by using a finite element method [36] and the standard second-order finite difference scheme
[19,37]. Chen and Zha [38,39] developed a fully coupled fluid-structural interaction method, in which the 3rd order MUSCL
differencing for inviscid fluxes and 2nd-order central differencing for viscous terms are used. Except the spectral methods,
the finite differencing schemes in the aforementioned research work are all at 2nd-order accuracy.

In this paper, a 5th-order accuracy WENO scheme for the inviscid fluxes and the new 4th order conservative central dif-
ferencing for the viscous terms are used to simulate the cylinder flows due to vortex-induced cylinder vibration. Since there
are no shock discontinuities in the cylinder flows, the WENO scheme is fixed to its optimal weights to achieve minimum
dissipation. The fully coupled fluid-structural interaction strategy developed by Chen and Zha [38,39] is employed.

2. Numerical methods

2.1. Flow governing equations

The normalized Navier–Stokes equations governing compressible viscous flows can be written in the Cartesian coordinate
as:
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The repeated index k stands for the Einstein summation over x, y and z. The stress s and heat flux q are,
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The equation of state is
qe ¼ p
c� 1

þ 1
2
qðu2 þ v2 þw2Þ
In the above equations, q is the density, u;v , and w are the Cartesian velocity components in x; y and z directions, p is the
static pressure, and e is the total energy per unit mass, l is the molecular viscosity, c;Re;M1 and Pr are the ratio of specific
heat, Reynolds number, Mach number and Prandtl number, respectively.
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In the generalized coordinates, Eq. (5) can be written as:
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where
Q 0 ¼ 1
J
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For simplicity, the prime 0 in Eq. (6) will be omitted. In above equations, J is the transformation Jacobian.
It was pointed out by Thomas and Lombard [40] that, due to the mixed temporal and spatial derivatives after discretiza-

tion, an additional term appears, which theoretically equals zero, but numerically still remains. Consequently, numerical er-
ror could be introduced in the discretized form of the equations of the flow motion if this term is neglected. In order to
reduce or avoid this error, the geometric conservation law(GCL) needs to be enforced.

There are various ways in which the GCL may be satisfied [41]. One approach is to add the following additional term to
the right-hand side of the equations as a source term of the governing Eq. (6):
S ¼ Q 0
@J�1

@t
þ nt

J

� �
n

þ gt

J

� �
g
þ ft

J

� �
f

" #
ð7Þ
Another approach consists of rewriting the governing Eq. (6) as
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and then evaluate ð1=JÞt by using the GCL identity, i.e.,
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There are various methods for solving (9) (see [41–44]).
In this paper, the first approach is used.
2.2. The 5th-order WENO Scheme [5]

The finite difference 5th-order accuracy WENO scheme suggested by Jiang and Shu [5] is used for the inviscid flux. The
5th-order accurate WENO ðr ¼ 3Þ reconstruction of uL can be written as
uL
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where e is introduced to avoid the denominator becoming zero. In the practical applications, e plays an important role on the
convergence, stability and accuracy of WENO scheme [15,9]. The higher the e value, the closer the weights approaching the
optimum value Ck, and hence the lower the numerical dissipation. However, when there is a shock in the flow, the e value
cannot be too large to maintain the sensitivity to the shock. In [9], e ¼ 10�2 is recommended for the transonic flows with
shock waves. In this paper, since there is no shock wave in the flow, we use the fixed weights xk ¼ Ck to have minimum
numerical dissipation.

The uR is constructed symmetrically as uL about iþ 1=2.

2.3. The new 4th-order central differencing for viscous terms [15]

A set of conservative 4th-order accurate finite central differencing schemes for the viscous terms is suggested below.
These central differencing schemes are constructed so that the stencil widths are within the WENO scheme stencil. This
would be satisfied if the central differencing achieves their maximum order accuracy in the WENO stencil. We take the
viscous flux derivative in n-direction as the example to explain how the schemes are constructed.

To conservatively discretize the viscous derivative term in Navier–Stokes equations Eq. (6), we have
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To obtain 4th-order accuracy, eR needs to be reconstructed as
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If R in Eq. (11) can be approximated with the accuracy order not lower than 4th-order, the Taylor series expansion analysis
of (10) and (11) will give
1
Dn
ðeRiþ1=2 � eRi�1=2Þ ¼ R0ðniÞ þ OðDn4Þ ð14Þ
and the 4th-order accuracy is achieved (to be proved later). It needs to point out that in Eq. (10), eRi�1=2 cannot be replaced by
Ri�1=2. Otherwise, the 4th-order accuracy cannot be achieved even though the high order approximation of Ri�1=2 is used. The
4th-order accuracy from Eqs. (10)–(14) is also based on the condition of uniform spacing Dn ¼ C, which is ensured in the
generalized coordinates with Dn ¼ Dg ¼ Df ¼ 1.

In order to achieve the highest order accuracy of RI with I ¼ i� 3=2; i� 1=2; iþ 1=2, the approximation of each term in Eq.
(11) using the same stencil is given below:
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where
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By choosing different ranges for ðm;nÞ; ðr; sÞ; ðp; qÞ and different coefficients CI
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The other terms are determined similarly. If eRi�1=2 takes eRi�1=2 ¼ Ri�1=2, and
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2
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and the other coefficients are zero, then the scheme (10) is the three point stencil 2nd-order scheme.
For comparison, the terms used in Refs. [13,14] by De Rango and Zingg et al. are given as the following,
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Compare Eqs. (23) and (24), and (26) and (27), it can be seen that lI in the present paper has the same accuracy order as that
of De Rango and Zingg et al., but has smaller stencil width ði� 2; . . . ; iþ 1Þ; @u

@n jI has the same stencil width, but obtains one
accuracy order higher than that of De Rango and Zingg et al. in Refs. [13,14].

It can be proved below that Eq. (10) is symmetric with respect to cell i. Let’s take a single term from Eq. (10) as the
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@n

� �
i�1=2; eC I

l ;
eDI

l

and ~aI are used for
g
l @u

@n

� �
iþ1=2. Based on Tables 1 and 2, we have
eCI
l ¼ CI�1

l�1 ;
eDI

l ¼ DI�1
l�1 ; ~aI ¼ aI�1; I ¼ i� 1=2; iþ 1=2; iþ 3=2
Substitute Eq. (15)–(18) to Eq. (28), we have
1
Dn

g
l @u
@n

� �
iþ1=2 �

g
l @u
@n

� �
i�1=2

" #
¼
X1

m¼�2

X2

r¼�3

Ciþm;iþrliþmuiþr ð29Þ
Eq. (29) has totally 24 terms. As the examples, let’s examine the coefficients of li�2ui�3;liþ2uiþ3;li�1ui�2, and liþ1uiþ2, which
are the coefficients of the symmetric terms.
Ci�2;i�3 ¼ �
Xiþ1=2

I¼i�3=2

aIC
I
�2DI

�3 ¼ �
�1
24

� �
� 5
16
� 71
1920

þ 26
24
� �1

16

� �
� �3

640

� �
þ �1

24

� �
� 1
16
� �3

640

� �� �
¼ 7

46080
Ciþ2;iþ3 ¼
Xiþ3=2

I¼i�1=2

~aI
eCI

2
eDI

3 ¼
�1
24

� �
� 1
16
� 3
640
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24
� �1

16

� �
� 3
640
þ �1
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� �
� 5
16
� �71

1920

� �
¼ 7

46080
Ci�1;i�2 ¼
Xiþ3=2

I¼i�1=2

~aI
eCI
�1
eDI
�2 �

Xiþ1=2

I¼i�3=2

aIC
I
�1DI

�2

¼ �1
24

� �
� 5
16
� 71
1920

þ 26
24
� �1

16

� �
� �3

640

� �
þ �1

24

� �
� 1
16
� �3

640

� �
� �1

24

� �
� 15
16
� �141

128

� �
þ 26

24
� 9
16
� 25
384
þ �1

24

� �
� �5

16

� �
� 3
128

� �
¼ � 479
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Ciþ1;iþ2 ¼
Xiþ3=2

I¼i�1=2

~aI
eC I

1
eDI

2 �
Xiþ1=2

I¼i�3=2

aIC
I
1DI

2

¼ �1
24

� �
� �5

16

� �
� �3

128

� �
þ 26

24
� 9
16
� �25

384

� �
þ �1

24

� �
� 15
16
� 141
128

� �1
24

� �
� 1
16
� 3
640
þ 26

24
� �1

16

� �
� 3
640
þ �1

24

� �
� 5
16
� �71

1920

� �� �
¼ � 479

5760
So we have Ci�2;i�3 ¼ Ciþ2;iþ3;Ci�1;i�2 ¼ Ciþ1;iþ2. Furthermore, it can be proved that the summation of all the coefficients in Eq.
(29) is zero. That is,
X1

m¼�2

X2

r¼�3

Ciþm;iþr ¼ 0
Hence the schemes make Eq. (10) symmetric about grid node i. The symmetry of central differencing for Eq. (10) satisfies the
diffusion property of viscous fluxes.

Next, we prove that the 4th-order accuracy given by Eq. (14) is satisfied. Again, take the term T ¼ l @u
@n from

g
l @u

@n

� �
i�1=2 in

Eq. (28) as an example, which is located at I ¼ i� 3=2. Based on Eqs. (15) and (16), and Taylor’s series expansion, there is
T�i�3=2 ¼
Xn

l¼m

CI
lliþl

 !
1
Dn

Xs

l¼r

DI
luiþl

 !
¼ li�3=2 þ AIlð4Þi�3=2Dn4 þ OðDn5Þ
h i @u

@n

����
i�3=2

þ OðDn5Þ
" #

¼ li�3=2
@u
@n

����
i�3=2

þ AIlð4Þi�3=2
@u
@n

����
i�3=2

Dn4 þ OðDn5Þ ð30Þ
where AI is the coefficient of Taylor’s series expansion, lð4Þ stands for the 4th order derivative of l. The corresponding sym-
metric term T ¼ l @u

@n from
g
l @u

@n

� �
iþ1=2, which is located at I ¼ i� 1=2, is
Tþi�1=2 ¼
Xn

l¼m

eC I
lliþ1þl

 !
1
Dn

Xs

l¼r

eDI
luiþ1þl

 !
¼ li�1=2 þ eAIlð4Þi�1=2Dn4 þ OðDn5Þ
h i @u

@n

����
i�1=2

þ OðDn5Þ
" #

¼ li�1=2
@u
@n

����
i�1=2

þ eAIlð4Þi�1=2
@u
@n

����
i�1=2

Dn4 þ OðDn5Þ
Note that AI ¼ eAI , and
lð4Þi�1=2
@u
@n

����
i�1=2

¼ lð4Þi�3=2
@u
@n

����
i�3=2

þ OðDnÞ
hence
Tþi�1=2 � T�i�3=2 ¼ li�1=2
@u
@n

����
i�1=2

� li�3=2
@u
@n

����
i�3=2

þ OðDn5Þ
The other two terms ði� 1=2; iþ 1=2Þ can be analyzed similarly as above, thus Eq. (14)
1
Dn
ðeRiþ1=2 � eRi�1=2Þ ¼ R0ðniÞ þ OðDn4Þ
is proved, i.e. the constructed schemes are formally 4th-order accuracy. The central differencing order of accuracy given in
Eqs. (19)–(21) is also the maximum that can be achieved using the WENO stencil.

2.4. Structural model

For the computation of the vortex-induced oscillating cylinder, which is elastically supported as shown in Fig. 1 so that it
oscillates only in the direction aligned with or normal to the incoming flow, the structural dynamic equations that governs
the motion of the cylinder are:
m€xþ Cx _xþ Kxx ¼ Df ð31Þ
m€yþ Cy _yþ Kyy ¼ Lf ð32Þ
These equations are solved implicitly together with the equations of flow motion in a fully coupled manner. In Eq. (31), €x; _x,
and x represent the dimensionless horizontal acceleration, velocity and displacement of the moving object, respectively.
Similarly, €y; _y, and y in Eq. (32) represent the acceleration, velocity and displacement in the vertical direction. The terms
m; Lf , and Df are the mass, lift, and drag per unit span, respectively, Cx and Cy are the damping coefficients in horizontal



CyKy

Cx

Kx

Fig. 1. Sketch of the elastically mounted cylinder.
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and vertical directions, and Kx and Ky are the spring constants in horizontal and vertical directions. In the present study, this
‘self-excited oscillators’ is assumed to have the same response in both directions, i.e. Cx ¼ Cy and Kx ¼ Ky.

If the normalization procedure is applied to Eqs. (31) and (32) by using the same reference scales of those used for the
equations of flow motion, the following nondimensional equations are obtained:
€xþ 2f
2
�u

� �
_xþ 2

�u

� �2

x ¼ 2
lsp

Cd ð33Þ

€yþ 2f
2
�u

� �
_yþ 2

�u

� �2

y ¼ 2
lsp

Cl ð34Þ
where f is the nondimensional structural damping coefficient calculated by f ¼ Cx;y= 2
ffiffiffiffiffiffiffiffiffiffiffiffi
mKx;y

p� �
; �u is the reduced velocity de-

fined by �u ¼ U1=bx,b is radius of the cylinder, x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kx;y=m

p
, the mass ratio defined by ls ¼ m=pq1b2, and Cd and Cl are the

drag and lift coefficients, respectively. Then the equations are transformed to a state form and expressed by:
½M� @fSg
@t
þ ½K�fSg ¼ q ð35Þ
where
S ¼

x
_x

y
_y

0BBB@
1CCCA; M ¼ ½I�; K ¼

0 �1 0 0
2
�u

	 
2 2f 2
�u

	 

0 0

0 0 0 �1
0 0 2

�u

	 
2 2f 2
�u

	 

0BBB@

1CCCA; q ¼

0
2

lsp
Cd

0
2

lsp
Cl

0BBBB@
1CCCCA
.

2.5. The time discretization [38,39]

A pseudo temporal term @Q
@s is added to the governing Eq. (5) for the unsteady calculation. The physical temporal term @Q

@t is
discretized implicitly using a 2nd-order three point, backward differencing as the following
@Q
@t
¼ 3Q nþ1 � 4Qn þ Q n�1

2Dt
and the pseudo temporal term is discretized with first order Euler scheme to enhance diagonal dominance. The semi-discret-
ized governing Eq. (5) can then be expressed as
1
Ds
þ 1:5

Dt

� �
I � @R

@Q

� �nþ1;m
" #

dQ nþ1;mþ1 ¼ Rnþ1;m � 3Q nþ1;m � 4Q n þ Q n�1

2Dt
ð36Þ
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where n is the physical time level index, m is the iteration index within a physical time step, Dt and Ds are the physical and
pseudo time step, R is the net flux evaluated on a grid point, respectively. Eq. (36) is solved using the unfactored Gauss–Seidel
line iteration [38,45,46].

To couple the structural equations with the equations of flow motion and solve them implicitly in each physical time step,
Eq. (35) is discretized and integrated in a manner consistent with Eq. (36)
Table 4
Accurac

Sche

2nd

4th

4th
1
Ds

Iþ 1:5
Dt

Mþ K
� �

dSnþ1;mþ1 ¼ �M
3Snþ1;m � 4Sn þ Sn�1

2Dt
� KSnþ1;m þ qnþ1;mþ1 ð37Þ
where n is the physical time level index and m stands for the pseudo time index.
The detailed coupling procedure between the fluid and structural systems can be referred in Ref. [39]. Within a physical

time step, the structural motion and the flow field are unknown and are solved iteratively between the fluid and structural
systems in a fully couple manner. In our study, within each physical time step, 80 pseudo time steps are used with the L2

Norm residual reduced by 8 order of magnitude.
3. Results and discussion

3.1. Comparison of scheme accuracy

This subsection is to compare the accuracy of three different schemes: the three point stencil 2nd-order scheme, the 4th-
order scheme suggested in [13,14], and the present 4th-order scheme. In order to match the form of the viscous terms in
compressible Navier–Stokes equations, the testing function is taken as
@

@x
l @f
@x

� �

and two cases are validated:

(1)
l ¼ Ae�2x
; f ðxÞ ¼ 1� e�Rx

1� e�R
; 0 6 x 6 1
and A ¼ 0:01; R ¼ 20. The function f ðxÞ has the similar distribution as the velocity of a wall boundary layer.
(2)
l ¼ Ae2x
; f ðxÞ ¼ sinðBxÞ; 0 6 x 6 1
and A ¼ 0:1;B ¼ 10. This function f ðxÞ represents a high frequency wave.

Tables 4 and 5 give the accuracy comparison. It can be seen that the three schemes achieve the expected accuracy. For the
two 4th-order schemes, although both of them are fourth order accuracy, the absolute errors of the present scheme are smal-
ler and are about half of those generated by the schemes suggested by De Rango and Zingg et al. [13,14].

For calculating of the function @
@x ðl

@f
@xÞ, the CPU time used by the 4th-order scheme given in [13,14] and the present 4th-

order scheme are 1.40 and 3.45 times of that of the 2nd-order scheme, respectively. However, for solving Navier–Stokes
y comparison of case (1).

me N L1 error L1 order L1 error L1 order

20 0.4264 – 3.1956e�2 –
40 0.1036 2.041 6.1242e�3 2.383
80 2.5727e�2 2.010 1.3376e�3 2.195
160 6.4204e�3 2.003 3.1236e�4 2.098
320 1.6044e�3 2.001 7.5463e�5 2.049

([14]) 20 5.4198e�2 – 4.0620e�3 –
40 3.2301e�3 4.069 1.9088e�4 4.411
80 1.9939e�4 4.018 1.0367e�5 4.203
160 1.2423e�5 4.005 6.0440e�7 4.100
320 7.7584e�7 4.001 3.6492e�8 4.050

(present) 20 2.7556e�2 – 2.0653e-3 –
40 1.8554e�3 3.893 1.0964e�4 4.236
80 1.1753e�4 3.981 6.1103e�6 4.165
160 7.3680e�6 3.996 3.5846e�7 4.091
320 4.6085e�7 3.999 2.1676e�8 4.048



Table 5
Accuracy comparison of case (2).

Scheme N L1 error L1 order L1 error L1 order

2nd 20 1.0566 – 0.3859 –
40 0.2657 1.992 9.6471e�2 2.000
80 6.6527e�2 1.998 2.4151e�2 1.998
160 1.6644e�2 1.999 6.0415e�3 1.999
320 4.1628e�3 2.000 1.5113e�3 1.999

4th ([14]) 20 3.1101e�2 – 1.1432e�2 –
40 1.9798e�3 3.974 7.2257e�4 3.984
80 1.2455e�4 3.991 4.5257e�5 3.997
160 7.7905e�6 3.999 2.8311e�6 3.999
320 4.8722e�7 3.999 1.7695e�7 4.000

4th (present) 20 1.9647e�2 – 6.8659e�3 –
40 1.2169e�3 4.013 4.2900e�4 4.000
80 7.5868e�5 4.004 2.6950e�5 3.993
160 4.7388e�6 4.001 1.6895e�6 3.996
320 2.9628e�7 3.999 1.0575e�7 3.998
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equations, the CPU time increase of the two 4th-order schemes is only a few percent since the other operation of the Navier–
Stokes solver is dominant. This can be seen in the next section.
3.2. Wall boundary layer

A steady state laminar supersonic boundary layer flow on an adiabatic flat plate is employed to validate the present meth-
odology. The incoming Mach number is 2.0. The Reynolds number based on the length of the flat plate is 4:0� 104. The Pra-
ndtl number of 1.0 is used in order to compare with the analytical solution. The computation domain is taken to be
½0;2� � ½0;1:6�. The mesh size is 180� 80, and theCFL number of 200 is used.

For the comparison purpose, the viscous terms are discretized by using the three point stencil 2nd-order scheme, the 4th-
order scheme given in [13,14] and the present 4th-order scheme, respectively. The velocity and temperature profiles shown
in Figs. 2 and 3 indicate that all the numerical results agree excellently with the Blasius solution.

Table 6 gives the convergence and CPU information. The convergence condition is that the maximal residual is smaller
than 10�13. All the three schemes use 218 steps to reach the convergence condition. This indicates that the high order dis-
cretization of viscous terms almost has no effect on the convergence rate. The comparison of CPU time used shows that the
4th-order scheme of De Rango and Zingg et al. [13,14] is 4.9% more than the 2nd-order scheme, and the present 4th-order
scheme is 11.8% more than the 2nd-order scheme.
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Fig. 2. Comparison of the velocity profiles of the supersonic laminar boundary layer flow.



Table 6
The comparison of different scheme for viscous terms.

Scheme Steps CPU time (s) Percent (%)

2nd 218 62.9 100.0
4th (Ref. [14]) 218 66.0 104.9
4th (present) 218 70.3 111.8
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Fig. 3. Comparison of the temperature profiles of the supersonic laminar boundary layer flow.

Fig. 4. The near wall zone mesh around the solid surface of the cylinder.
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Fig. 5. Time histories of lift and drag coefficients of the stationary cylinder due to vortex shedding.

Table 7
Results of refinement and comparison with the experiments.

Scheme Mesh dimension StCd
StCl

Cl Cd

2nd 120� 80 0.4497 0.2247 1.188 1.479
240� 160 0.4633 0.2258 1.166 1.480

4th (Ref. [14]) 120� 80 0.4494 0.2247 1.186 1.477
240� 160 0.4513 0.2258 1.165 1.479

4th (present) 120� 80 0.4497 0.2248 1.186 1.477
240� 160 0.4517 0.2258 1.165 1.480

Ref. [39] 120� 80 0.4395 0.2197 1.181 1.453
200� 120 0.4516 0.2246 1.227 1.484

Ref. [49] 384� 96 0.4674 0.2331 1.149 1.315
Ref. [47] 0.2075
Ref. [48] 0.2066
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Fig. 6. Comparison of the baseline and refined mesh results for the stationary cylinder.
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3.3. Stationary cylinder

The flow past a stationary cylinder is used as the unsteady flow validation case. The zoomed mesh near the cylinder is
shown in Fig. 4. The baseline mesh dimensions are 120� 80 in circumferential and radial directions. After intensive numer-
ical experiments, the far field boundary is chosen to be located 20 diameters away from the center of the cylinder because
the solution is not sensitive to the far field boundary at this range. The Reynolds number based on the free-stream condition
and cylinder diameter is Re ¼ 500.

The computed drag and lift coefficients are shown in Fig. 5. As shown in the figure, the lift oscillates at a certain frequency
in terms of the Strouhal number StCl

. The drag coefficient oscillates with twice that frequency, StCd
. Table 7 shows that the

results are in good agreement with the experiment [47,48] and the results of other researchers [39,49]. There is only a slight
difference among three different viscous schemes.

Fig. 6 shows the comparison of the results with refined mesh 240� 160. There is little difference between the results of
the baseline mesh and refined mesh. This shows that the mesh system 120� 80 is sufficient for this problem with Re ¼ 500.
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Fig. 7. Comparison of the trajectories using different schemes, ls ¼ 12:7324; �u ¼ 1:5915; f ¼ 0:1583.
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3.4. Vortex-induced vibration of circular cylinder

After the stationary cylinder vortex shedding flow becomes dynamically stable, the cylinder is released to be controlled
by the structure model as shown in Fig. 1. Same as the stationary cylinder case, a low Reynolds number, Re ¼ 500, is used. For
the purpose of comparison with the experimental data of [50], several different combinations of structural parameters are
used in the computation.

In this study, for all the cases of oscillating cylinder, Strouhal number is set to be 0.2, corresponding to �u ¼ 1:5915. Dif-
ferent mass ratios, ls, are used to test the different responses of the structural system. They are equal to 1.2732, 5.0, and
12.7324, respectively. To match the wide range of the experimental data, the damping ratio, f, is varied in the range
0.001–1.583.

First, the comparison for three different viscous scheme is given for the case of ls ¼ 12:7324; �u ¼ 1:5915; f ¼ 0:1583.
Fig. 7 is the trajectories. It can be seen that, although almost the same final trajectories are obtained by different schemes,
the paths approaching the final trajectories are quite different for 4th-order scheme and 2nd-order scheme. The displace-
x

y

0.1 0.2 0.3 0.4 0.5 0.6
-0.3

-0.2

-0.1

0

0.1

0.2

0.3
μs=12.7324,ξ=0.063326

μs=5.0,ξ=0.16125

μs=1.2732,ξ=0.63326

Fig. 9. Comparison of the trajectories at reduced damping coefficient of 2.0.
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Fig. 10. Comparison of the trajectories with f ¼ 0:1583.
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ments in y-direction calculated by the 2nd-order, the 4th-order of De Rango and Zingg et al. [13,14] and the present 4th-or-
der schemes are somewhat different and are 0.1743, 0.1733, and 0.1731, respectively. The two 4th-order schemes are in
good agreement.

The numerical results for present study are plotted in Fig. 8 for the three values of ls. Also plotted are the computations
conducted in [49] with ls ¼ 5:0, computations in [51] with ls ¼ 12:73, and the experimental data given in [50]. In Fig. 8, the
abscissa is the reduced damping coefficient with the form of 8p2St2fm=qD2 [52], and the ordinate is the cross-flow displace-
ment of motion normalized by the diameter of the cylinder. Overall, a good agreement is observed between the present re-
sults and the experimental results. The low damping ratio case with ls ¼ 1:2732 shows better agreement with the
experiments. The results of ls ¼ 5:0 and ls ¼ 12:7324 are consistent with the numerical results conducted by other
researchers.

Figs. 9–11 are the comparison of the trajectories at different conditions. At the reduced damping coefficient of 2.0, Fig. 9
shows that the trajectories are similar to the results computed in [52] and [49]. With the same f ¼ 0:1583, Fig. 10 shows that
decreased ls results in the trajectory more asymmetrical. From Fig. 11, it can be seen that, for the same ls ¼ 12:7324, the
trajectory of f ¼ 0:001583 is quite irregular due to the smaller damping constrain. When f is increased, the amplitude of
vibration is decreased.
4. Conclusion

A set of conservative 4th-order central differencing schemes for the viscous terms of compressible Navier–Stokes equa-
tions are suggested and proved in this paper. These schemes are used with the 5th-order WENO schemes for inviscid flux.
The algorithm is used to simulate the vortex-induced oscillations of an elastically mounted circular cylinder.

The conservative 4th-order viscous schemes have the following features:

(1) For the viscous fluxes of compressible Navier–Stokes equations at an interface, all the terms at the associated inter-
faces are evaluated using the same stencil. The schemes achieve the maximum order of accuracy within the stencil
width of the WENO scheme.

(2) The schemes are symmetric central differencing with respect to the grid node. The symmetry satisfies the diffusion
property of a viscous flux.

(3) For viscosity coefficient, the stencil width of the present scheme is two points less than the existing scheme of De Ran-
go and Zingg. For the cross derivatives, the treatment of the first direction has the same formulation as that for the
viscosity coefficient. Hence the stencil width in the first direction is also two points less. The narrower stencil is very
useful to facilitate boundary condition treatment.

The schemes are validated with the flow of supersonic flat plate boundary layer flow and the flow past a stationary cyl-
inder. Excellent agreement with theoretical results and experiments are obtained.

The algorithm is then applied to simulate the vortex-induced vibration of a circular cylinder. The variation of lift coeffi-
cient, drag coefficient, and trajectory under different conditions are investigated. If the reduced damping or the structural
damping coefficient is fixed, the larger the mass ratio, the smaller the amplitude. With the increased mass ratio, the ampli-
tude of lift increases slightly, but the drag amplitude increases significantly. If a mass ratio is specified, the smaller damping
coefficient induces more irregular trajectory. The increased damping coefficient leads to lift increase and drag decrease. The
computed cylinder vibration displacement is in good agreement with experiment.
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